
www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6574-6577, 2021 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 1

 ISSN 2395-1621

A Study of MongoDB Sharded Cluster

Doppa Srinivas, Prof. Kale Navnath, Prof. Sarika V.Bodake

doppa.srinivas35@gmail.com

Computer Science

Padmabhushan Vasantdada Patil Institute Of Technology

(Savitribai Phule Pune University)

Pune, India.

ABSTRACT

ARTICLE INFO

With the rapid development of the Database technology, the demands of large-scale

distributed service and storage have brought great challenges to traditional relational

database. NoSQL database, which breaks the shackles of RDBMS, is becoming the focus

of attention. In this paper, the principles and implementation mechanisms of Auto-

Sharding in MongoDB database are firstly presented, then Redis Cache is used to

handle the frequency of data operation is proposed in order to solve the problem of

uneven distribution of data in auto-sharding. The improved balancing strategy can

effectively balance the data among shards, and improve the cluster's concurrent reading

and writing performance.

Keywords: Sharding, NoSQL, Redis, Database

Article History

Received: 2
nd

April 2021

Received in revised form :

2
nd

April 2021

Accepted: 5
th

April 2021

Published online :

05
th

April 2021

I. INTRODUCTION

The term “NoSQL” was first introduced in 1988 for the

relational databases not having SQL interfaces [1]. However,

the term was re-introduced in 2009 for the kind of modern

web-scale databases which trade transactional consistency

over large-scale data distributions and incremental

scalability. NoSQL databases were not originally meant to

replace traditional databases, rather they are more suitable to

adopt when relational databases does not seem appropriate.

The main reasons behind adopting NoSQL databases are

their simple yet flexible architecture and the capability of

handling large amount of multimedia, word processing,

social media, emails and other unstructured data files [6].

While, the conventional relational databases are hard to

scale-out mainly due to their pre-defined schemas and I/O

performance bottlenecks [2, 4]. These issues have made

relational databases difficult to fit in the new computing

paradigms such as Grid and Cloud applications, data

warehousing, web2.0, social networking etc [7]. Contrary to

it, NoSQL databases are becoming a primary choice for

cloud applications because of their highly available, reliable

and scalable nature [8].

The BASE (Basically Available, Soft State and Eventually

Consistent) properties of NoSQL databases allow them to be

scalable and thus, NoSQL systems inherently support auto-

sharding phenomenon [2]. Auto-sharding is the automatic

and native horizontal distribution of data among different

severs in NoSQL databases which, in turn, increase the

performance and throughput of database operations [9].

Another significant advantage of auto-sharding is load

balancing across the cluster such that a single server does

not get overloaded with all the queries. This makes NoSQL

databases a good candidate for high transaction and write-

intensive database applications [4, 5].Redis cache is to

further improve the performance of the database.

II. REDIS CACHE

Caching is a technique used to accelerate application

response times and help applications scale by placing

frequently needed data very close to the application. Redis

[11], an open source, in-memory, data structure server is

frequently used as a distributed shared cache (in addition to

being used as a message broker or database) because it

enables true statelessness for an applications’ processes,

while reducing duplication of data or requests to external

data sources. In the redis cache we store the mongodb data

so that for the next request we will not hit the database again.

A. Why cache

The cache’s main purpose is to reduce the time needed to

access data stored outside of the application’s main memory

space. Additionally, caching is also an extremely powerful

tool for scaling up external data sources and mitigating the

effects that usage spikes have on them. An application-side

cache effectively reduces all resource demands needed to

serve data from external sources, thus freeing these

resources for other uses. Without the use of a cache, the

application interacts with the data source for every request,

whereas when a cache is employed only a single request to

the external data source is needed, with subsequent access

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6574-6577, 2021 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 2

served from the cache. Additionally, a cache also

contributes to the application’s availability. External data

sources may experience failures that result in degraded or

terminated service. During such outages the cache can still

serve data to the application and thus retain its availability

B. What is an application cache

Once an application process uses an external data source, its

performance can be bottlenecked by the throughput and

latency of said data source. When a slower external data

source is used, frequently accessed data is often moved

temporarily to a faster storage that is closer to the

application to boost the application’s performance. This

faster intermediate data storage is called the application’s

cache, a term originating from the French verb “cacher”

which means “to hide.” The following diagram shows the

high-level architecture of an application cache:

III. SHARDING

Sharding is a method for distributing data across multiple

machines. MongoDB uses sharding to support deployments

with very large data sets and high throughput operations.

Database systems with large data sets or high throughput

applications can challenge the capacity of a single server.

For example, high query rates can exhaust the CPU capacity

of the server. Working set sizes larger than the system’s

RAM stress the I/O capacity of disk drives.

There are two methods for addressing system growth:

vertical and horizontal scaling.

Vertical Scaling involves increasing the capacity of a single

server, such as using a more powerful CPU, adding more

RAM, or increasing the amount of storage space.

Limitations in available technology may restrict a single

machine from being sufficiently powerful for a given

workload. Additionally, Cloud-based providers have hard

ceilings based on available hardware configurations. As a

result, there is a practical maximum for vertical scaling.

Horizontal Scaling involves dividing the system dataset and

load over multiple servers, adding additional servers to

increase capacity as required. While the overall speed or

capacity of a single machine may not be high, each machine

handles a subset of the overall workload, potentially

providing better efficiency than a single high-speed high-

capacity server. Expanding the capacity of the deployment

only requires adding additional servers as needed, which can

be a lower overall cost than high-end hardware for a single

machine. The tradeoff is increased complexity in

infrastructure and maintenance for the deployment.

MongoDB supports horizontal scaling through sharding.

A. Sharded Cluster

A MongoDB sharded cluster consists of the following

components:

 Shard: Each shard contains a subset of the sharded
data. Each shard can be deployed as a replica set.

 Mongos: The mongos acts as a query router,
providing an interface between client applications
and the sharded cluster.

 Config Servers: Config servers store metadata and
configuration settings for the cluster. As of
MongoDB 3.4, config servers must be deployed as a
replica set (CSRS).

The following graphic describes the interaction of

components within a sharded cluster:

B. Replica Set

Replication provides redundancy and increases data

availability. With multiple copies of data on different

database servers, replication provides a level of fault

tolerance against the loss of a single database server.

A replica set is a group of mongod instances that maintain

the same data set. A replica set contains several data bearing

nodes and optionally one arbiter node. Of the data bearing

nodes, one and only one member is deemed the primary

node, while the other nodes are deemed secondary nodes.

The primary node receives all write operations. A replica set

can have only one primary capable of confirming writes

with { w: "majority" } write concern; although in some

circumstances, another mongod instance may transiently

believe itself to also be primary. [1] The primary records all

changes to its data sets in its operation log, i.e. oplog.

The secondaries replicate the primary’s oplog and apply the

operations to their data sets such that the secondaries’ data

sets reflect the primary’s data set. If the primary is

unavailable, an eligible secondary will hold an election to

elect itself the new primary.

You may add an extra mongod instance to a replica set as an

arbiter. Arbiters do not maintain a data set. The purpose of

an arbiter is to maintain a quorum in a replica set by

responding to heartbeat and election requests by other

replica set members. Because they do not store a data set,

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6574-6577, 2021 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 3

arbiters can be a good way to provide replica set quorum

functionality with a cheaper resource cost than a fully

functional replica set member with a data set. If your replica

set has an even number of members, add an arbiter to obtain

a majority of votes in an election for primary. Arbiters do

not require dedicated hardware.

IV. ARCHITECTURE

The above diagram shows the architecture of mongodb

sharded cluster with redis cache. I have created three shards

with 5 replica set each (3 data nodes and 2 arbitrary nodes)

on three virtual machines and five config servers are created

in other VM.

TABLE I.

S.No

Hardware configuration details

Virtual Machine Name
RAM(in

GB)

Number

of

Cores

1 DRS32 16 8

2 DRS33 16 8

3 DRS34 16 8

4 DRS35 16 8

Rij means ith shard jth Replica set and same arbitrary nodes

Aij.R12 means 1st shard 2nd replica set.P indicates the

primary node.

V. CONCLUSION

Under the above mentioned configuration the database is

able accepts the 30000/sec requests with help of redis cache.

The above graph shows the improvement of the

performance of database.

VI. ACKNOWLEDGMENT

I thank Suman Bahera, Senior Software Engineer at TCS for

his guidance in different core concepts of the mongodb.

I thank Sarika V.Bodake, Assistant Professor for assistance

and for comments that greatly improved the manuscript.

I would like to show my gratitude to the Kale Navnath,

Assistant Professor and Prof. Dr. B. K. Sarkar, Head,

Department of Computer Engineering for sharing their pearls

of wisdom with me during the course of this research, their

comments on an earlier version of the manuscript, although

any errors are my own and should not tarnish the reputations

of these esteemed persons.

VII. REFERENCES

 [1] R. Masood. "Fine-Grained Access Control for Database

Management Systems." MS (CCS) thesis, National

University of Science and Technology, Pakistan, 2013.

[2] 10Gen Corporation. "NoSQL Explained." Internet:

http://www.mongodb.com/nosql-explained.

[3] IBM Corporation. "Data Security and Privacy – A

holistic Approach." Internet: www.ibm.com/software/data/

optim/protect-data-privacy.

[4] CodeFutures Corporation. "Cost-effective Database

Scalability using database Sharding." Internet:

www.codefutures.com/database-sharding.

[5] A. Viswanathan and C.J. Kothari. "Hibernate

Framework-based database sharding for SaaS Applications."

Internet: http://www.ibm.com/developerworks/library/os-

hibernatesaas.

[6] C. Roe. "The Growth of Unstructured Data: What To Do

with All Those Zettabytes?" Internet:

http://www.dataversity.net/the-growth-of-unstructured-data-

what-are-we-going-to-do-with-all-those-zettabytes, Mar.

 [7] N. Hardiman. "Cloud computing and the rise of big

data." Internet: http://www.techrepublic.com/blog/the-

enterprise-cloud/cloud-computing-and-the-rise-of-big-data .

http://www.ibm.com/software/data/

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6574-6577, 2021 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 4

[8] A. Schram and K.M. Anderson. "MySQL to NoSQL:

data modeling challenges in supporting scalability," in Proc.

of the 3rd annual conference on Systems, programming, and

applications: software for humanity, 2012, pp. 191-202.

[9] MongoDB Inc. "MongoDB sharding guide - Sharding

and MongoDB Release 2.4.6." Internet:

http://docs.mongodb.org/manual/sharding/, Mar. 2014.

[10] J.D. Meier, A. Mackman, M. Dunner, S. Vasireddy, R.

Escamilla and A. Murukan. "Chapter 18: Securing Your

Database Server.” Internet: http://msdn.microsoft.com/en-

us/library/ff648664.aspx, Jun. 2006

[11]Redis is an open source (BSD licensed), in-memory data

structure store, used as a database, cache and message broker

: https://redis.io/

